

Compound Interest (Day 6-6)

In history, banks calculated interest at the end of each year on the original amount either borrowed or invested (the). This type of interest was called	,	
As time went on banks realized that there was another way to compute interest and make even more money. They called this type of interest		
To compute compound interest: Banks calculate the interest for the first period,		
it to the total, then calculate the interest on the total for the next period, and so on		

• Since we are calculating a rate % and it is growing to earn interest, the compound interest formula models the exponential growth equation, $y = ab^x$, just using different letters to represent BANKING terms.

Compound Interest: $A(t) = p(1+r)^t$

- A(t) = amount earned/owed after t years
- P = principal amount borrowed or invested (starting a#)
- r = interest rate % (must convert to a decimal)
- t = time in years
- 1. Sara had invested \$800 in a savings account that paid 4.2% interest compounded annually. How much money to the nearest cent was in the account after 4 years, if he left the money untouched?

2. If Bailey invested money 4 years ago with an annual interest rate of 3.275% compounded annually, and it is valued at \$11,260, how much money did she initially invest?

- 3. If the savings in a bank account can be modeled by the function $S(t) = 250(1.045)^{t}$. Which of the following is true?
 - (1) The initial amount deposited was \$250 and the interest earned was 45%
 - (2) The initial amount deposited was \$2.50 and the interest earned was 4.5%
 - (3) The initial amount deposited was \$250 and the interest earned was 4.5%
 - (4) The initial amount deposited was \$2.50 and the interest earned was 45%

4. If \$350 is placed in a savings account that earns 3.5% interest applied once a year, then how much would the savings account be worth after 10 years?

5. Tammy has a balance of \$5,620 in her savings account. She is moving this account to another bank that has advertised an interest rate of 6.5% per year. Which of the following equations would give Tammy's account worth, W, as a function of the number of years, y, it has been gaining interest.

(1)
$$W = 5620(.65)^{y}$$

(3)
$$W = 1.065y + 5620$$

(2)
$$W = 5620(1.065)^{\circ}$$

(4)
$$W = 1.65y + 5620$$

1.	\$325 is borrowed from a bank that charges 4% interest compounded annually. How much is owed after 7 years; 20 years?
2.	A youth group has a yard sale to raise money for a charity. The group earns \$800 but decided to put its money in the bank for a while. Calculate the amount of money the group will have if:
	a) Cool Bank pays compounded interest at a rate of 4%, but the youth group can only leave the money in for 3 years.
	b) Hot Bank pays compound interest at a rate of 3%, but the youth group can leave the money in for 5 years.
	c) Which bank is the better choice for their respective time restrictions, and how much more money will they receive by choosing this bank?
3.	If Piper invested money 7 years ago with an annual interest rate of 1.95% compounded annually, and it is valued at \$12,575, how much money, to the nearest cent, did she initially invest?

- 4. Milton has his money invested in a stock portfolio. The value, v(x), of his portfolio can be modeled with the function $v(x) = 30,000(0.78)^x$, where x is the number of years since he made his investment. Which statement describes the rate of change of the value of his portfolio?
 - (1) It decreases 78% per year
 - (2) It decreases 22% per year
 - (3) It increases 78% per year
 - (4) It increases 22% per year
- 5. The cost of airing a commercial on television is modeled by the function C(n) = 110n + 900, where n is the number of times the commercial is aired. Based on this model, which statement is true?
 - (1) The commercial costs \$0 to produce and \$110 per airing up to \$900.
 - (2) The commercial costs \$110 to produce and \$900 each time it is aired.
 - (3) The commercial costs \$900 to produce and \$110 each time it is aired.
 - (4) The commercial costs \$1010 to produce and can air an unlimited amount.
- 6. Solve for the solution to the following system graphically:

$$5x - 3y = -4$$

$$3x + 2y = 9$$

