Factoring I	Review	Continued
-------------	--------	-----------

1)	1) The height of a model rocket launched into the air from a rooftop is given by the quadratic equation $h = -16t^2+64t + 80$, where t is the time in seconds since launch, and h is measured in feet. At what time does the rocket land on the ground?		
	The rocket lands on the ground in seconds.		
2)	A missile is fired with an initial upward velocity of 2320 foot per second. The height can be modeled by $h = -16t^2 + 2320t$, where h is the height in feet above the ground and t is the time in seconds. Find the time it take the missile to reach a height of 40,000 feet.		
Th	e missile will have a height 40,000 feet at seconds and at seconds. What extra step is involved in factoring $ax^2 + bx + c = 0$ when a is not equal to 1?		
3)	What extra step is involved in factoring $ax^2 + bx + c = 0$ when a is not equal to 1?		
4)	A model rocket is fired from the ground at time $t = 0$, and its height is given (in cm) by the formula $h = -490t^2 + 1470t$, where t is measured in seconds.		
	a) Write an equation to find when the height of the rocket is 980 cm.		
	Answer:		
	b) Solve the equation by factoring.		
An	swer:		
a) Explain why there are two solutions to this problem.			

- 5) As a satellite falls from outer space onto Mars, its distance in miles from the planet is given by the formula $d = -9t^2 + 776$, where t is the number of hours it has fallen.
 - a) Write an equation to find when the satellite will be 200 miles away from Mars. Answer: ______
 - b) Solve the equation by factoring.

Answer: _

c) Explain why only one of these solutions makes sense for this problem.

Regents Questions:

- 1 Keith determines the zeros of the function f(x) to be -6 and 5. What could be Keith's function?
 - 1) f(x) = (x+5)(x+6)
 - 2) f(x) = (x+5)(x-6)
 - 3) f(x) = (x-5)(x+6)
 - 4) f(x) = (x-5)(x-6)
- 2 What is the solution set of the equation
 - (x-2)(x-a) = 0?
 - 1) -2 and a
 - 2) -2 and -a
 - 3) 2 and a
 - 4) 2 and -a
- 3 Which equation has the same solutions as
 - $2x^2 + x 3 = 0$
 - 1) (2x-1)(x+3) = 0
 - 2) (2x+1)(x-3) = 0
 - 3) (2x-3)(x+1) = 0
 - 4) (2x+3)(x-1) = 0
- 4 The zeros of the function $f(x) = 2x^2 4x 6$ are
 - 1) 3 and -1
 - 2) 3 and 1
 - 3) -3 and 1
 - 4) -3 and -1
- 5 The zeros of the function $f(x) = 3x^2 3x 6$ are
 - 1) -1 and -2
 - 2) 1 and -2
 - 3) 1 and 2
 - 4) -1 and 2

- 6 Solve $8m^2 + 20m = 12$ for m by factoring.
- 7 In the equation $x^2 + 10x + 24 = (x + a)(x + b)$, b is an integer. Find algebraically all possible values of b.
- 8 The function r(x) is defined by the expression x² + 3x - 18. Use factoring to determine the zeros of r(x). Explain what the zeros represent on the graph of r(x).
- 9 Janice is asked to solve $0 = 64x^2 + 16x 3$. She begins the problem by writing the following steps:
 - Line 1 $0 = 64x^2 + 16x 3$ Line 2 $0 = B^2 + 2B - 3$ Line 3 0 = (B+3)(B-1)
 - Use Janice's procedure to solve the equation for x. Explain the method Janice used to solve the quadratic equation.

- 1 If the domain is the set of real numbers, what is the solution set for the equation $x^2 + 4 = 0$?
 - 1) $\{-2\}$
 - 2) $\{2\}$
 - 3) $\{2,-2\}$
 - 4) { }
- 2 What is the solution set of the equation $3x^2 = 48$? 1) $\{-2, -8\}$
 - $(2) \{2,8\}$
 - 3) $\{4,-4\}$
 - $4) \{4,4\}$
- 3 A solution of the equation $\frac{x^2}{4} = 9$ is
 - 12 1)
 - 2) 6
 - 3) 3
 - 4) $\frac{3}{2}$
- 4 If $4x^2 100 = 0$, the roots of the equation are
 - 1) -25 and 25
 - 2) -25, only
 - 3) -5 and 5
 - 4) -5, only

- 5 Which value of x is a solution to the equation $13 - 36x^2 = -12?$
 - 1) $\frac{36}{25}$ 2) $\frac{25}{36}$ $-\frac{6}{5}$ 3) 4) $-\frac{5}{6}$
- 6 A student is asked to solve the equation $4(3x-1)^2 - 17 = 83$. The student's solution to the problem starts as $4(3x-1)^2 = 100$

$$(3x-1)^2 = 25$$

A correct next step in the solution of the problem is

- 1) $3x 1 = \pm 5$
- 2) $3x 1 = \pm 25$
- 3) $9x^2 1 = 25$
- 4) $9x^2 6x + 1 = 5$
- 7 What is the solution of the equation $2(x+2)^2 - 4 = 28?$
 - 1) 6, only
 - 2) 2, only
 - 3) 2 and -6
 - 4) 6 and -2

Extra Practice

1. Find the roots: $f(x) = x^2 - 64$

2. Find the zeroes: $5x^2 = 35x$

3. Solve: $2x = 2x^2 - 60$

4. Find the zeroes: $-35 = x^2 - 12x$

5. Solve for the zeroes of $y = x^2 - 7x + 10$. Then, graph the equation.

What is the connection between the zeroes and what you see on the graph?

6. Tony makes a phone call at a pay phone. The charge is \$0.25 for placing the call and \$0.10 for each minute. Tony has \$2.10 in change in his pocket. Write an inequality that can be used to find *m*, the maximum number of minutes that Tony can talk on the phone.

Solve this inequality algebraically to find the maximum number of whole minutes he can talk on the phone.