\qquad

Factoring Review Continued

1) The height of a model rocket launched into the air from a rooftop is given by the quadratic equation $h=-16 t^{2}+64 t+80$, where t is the time in seconds since launch, and h is measured in feet. At what time does the rocket land on the ground?

The rocket lands on the ground in \qquad seconds.
2) A missile is fired with an initial upward velocity of 2320 foot per second. The height can be modeled by $\mathrm{h}=-$ $16 t^{2}+2320 t$, where h is the height in feet above the ground and t is the time in seconds. Find the time it take the missile to reach a height of 40,000 feet.

The missile will have a height 40,000 feet at ___ seconds and at \qquad
3) What extra step is involved in factoring $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ when a is not equal to 1 ?
4) A model rocket is fired from the ground at time $\mathrm{t}=0$, and its height is given (in cm) by the formula $\mathrm{h}=-490 \mathrm{t}^{2}$ $+1470 t$, where t is measured in seconds.
a) Write an equation to find when the height of the rocket is 980 cm .

Answer: \qquad
b) Solve the equation by factoring.

Answer: \qquad
a) Explain why there are two solutions to this problem.
5) As a satellite falls from outer space onto Mars, its distance in miles from the planet is given by the formula $d=-9 t^{2}+776$, where t is the number of hours it has fallen.
a) Write an equation to find when the satellite will be 200 miles away from Mars.

Answer:
b) Solve the equation by factoring.

Answer:
c) Explain why only one of these solutions makes sense for this problem.

Regents Questions:

1 Keith determines the zeros of the function $f(x)$ to be -6 and 5 . What could be Keith's function?

1) $f(x)=(x+5)(x+6)$
2) $f(x)=(x+5)(x-6)$
3) $f(x)=(x-5)(x+6)$
4) $f(x)=(x-5)(x-6)$

2 What is the solution set of the equation $(x-2)(x-a)=0$?

1) - 2 and a
2) -2 and $-a$
3) 2 and a
4) 2 and $-a$

3 Which equation has the same solutions as
$2 x^{2}+x-3=0$

1) $(2 x-1)(x+3)=0$
2) $(2 x+1)(x-3)=0$
3) $(2 x-3)(x+1)=0$
4) $(2 x+3)(x-1)=0$

4 The zeros of the function $f(x)=2 x^{2}-4 x-6$ are

1) 3 and -1
2) 3 and 1
3) -3 and 1
4) -3 and -1

5 The zeros of the function $f(x)=3 x^{2}-3 x-6$ are

1) -1 and -2
2) 1 and -2
3) 1 and 2
4) - 1 and 2

6 Solve $8 m^{2}+20 m=12$ for m by factoring.

7 In the equation $x^{2}+10 x+24=(x+a)(x+b), b$ is an integer. Find algebraically all possible values of b.

8 The function $r(x)$ is defined by the expression $x^{2}+3 x-18$. Use factoring to determine the zeros of $r(x)$. Explain what the zeros represent on the graph of $r(x)$.

9 Janice is asked to solve $0=64 x^{2}+16 x-3$. She begins the problem by writing the following steps:

Line $1 \quad 0=64 x^{2}+16 x-3$
Line $20=B^{2}+2 B-3$
Line $3 \quad 0=(B+3)(B-1)$
Use Janice's procedure to solve the equation for x. Explain the method Janice used to solve the quadratic equation.

1 If the domain is the set of real numbers, what is the solution set for the equation $x^{2}+4=0$?

1) $\{-2\}$
2) $\{2\}$
3) $\{2,-2\}$
4) $\}$

2 What is the solution set of the equation $3 x^{2}=48$?

1) $\{-2,-8\}$
2) $\{2,8\}$
3) $\{4,-4\}$
4) $\{4,4\}$

3 A solution of the equation $\frac{x^{2}}{4}=9$ is

1) 12
2) 6
3) 3
4) $\frac{3}{2}$

5 Which value of x is a solution to the equation $13-36 x^{2}=-12$?

1) $\frac{36}{25}$
2) $\frac{25}{36}$
3) $-\frac{6}{5}$
4) $-\frac{5}{6}$

6 A student is asked to solve the equation $4(3 x-1)^{2}-17=83$. The student's solution to the problem starts as $4(3 x-1)^{2}=100$

$$
(3 x-1)^{2}=25
$$

A correct next step in the solution of the problem is

1) $3 x-1= \pm 5$
2) $3 x-1= \pm 25$
3) $9 x^{2}-1=25$
4) $9 x^{2}-6 x+1=5$

7 What is the solution of the equation
$2(x+2)^{2}-4=28$?

1) 6 , only
2) 2 , only
3) 2 and -6
4) 6 and -2

Extra Practice

1. Find the roots: $f(x)=x^{2}-64$
2. Find the zeroes: $5 x^{2}=35 x$
3. Solve: $2 x=2 x^{2}-60$
4. Find the zeroes: $-35=x^{2}-12 x$
5. Solve for the zeroes of $y=x^{2}-7 x+10$. Then, graph the equation.

What is the connection between the zeroes and what you see on the graph?

6. Tony makes a phone call at a pay phone. The charge is $\$ 0.25$ for placing the call and $\$ 0.10$ for each minute. Tony has $\$ 2.10$ in change in his pocket. Write an inequality that can be used to find m, the maximum number of minutes that Tony can talk on the phone.

Solve this inequality algebraically to find the maximum number of whole minutes he can talk on the phone.

