Quadratic Equations Topic		· · · · · · · · · · · · · · · · · · ·
	solving quadratic equations is	. In this method, a constant
is added to the expre	ession $x^2 + bx$ so that $x^2 + bx + c$ is a perfec	t square trinomial.
$x^2 + bx$, follow Step 1: Find of Step 2: Squar Step 3: Add the	the square for an expression of the form we these steps. One-half of b , the coefficient of x . The the result from Step 1. The result from Step 2 to $x^2 + bx$. The ulting expression as the square of a binomial.	
	Model_ Completing the Squ	uare
Example #1 Solve the following quadratic using completing the square. $x^2 + 2x - 48 = 0$	Example #2 Solve the following quadratic using completing the square. • $x^2 + 8x - 3 = 17$	Example #3 Solve the following quadratic using completing the square. $x^2 - 7x + 12 = 0$

CFU Think-Pair-Share

Which equation has the same solution as

$$x^2 - 6x - 12 = 0$$
?

1)
$$(x+3)^2 = 21$$

2)
$$(x-3)^2 = 21$$

3)
$$(x+3)^2 = 3$$

4)
$$(x-3)^2 = 3$$

When solving the equation $x^2 - 8x - 7 = 0$ by completing the square, which equation is a step in the process?

1)
$$(x-4)^2 = 9$$

2)
$$(x-4)^2 = 23$$

3)
$$(x-8)^2=9$$

4)
$$(x-8)^2 = 23$$

Guided Practice_ Completing the Square

Example #1
Solve the following of

Solve the following quadratic using completing the square.

$$x^2 + 10x = 200$$

Example # 2

Solve the following quadratic using completing the square.

$$2x^2 + 12x = 18$$

Example # 3

Solve the following quadratic using completing the square.

$$4x^2 + 4x - 4 = 0$$

CFU_ Think-Pair-Share			
Example # 1	Example # 2		
Solve the following quadratic using completing the square.	Solve the following quadratic using completing the square.		
$x^2 + 10x + 7 = 0$	X ² - 9x = 1		
Answer:	Answer:		
Example # 3 Solve the following quadratic using completing the square. $3x^2 + 6x = 18$	Example # 4 Solve the following quadratic using completing the square. 2x²- 16x + 12 = 0		
Answer:	Answer:		

Independent Practice

1 Which step can be used when solving

 $x^2 - 6x - 25 = 0$ by completing the square?

- 1) $x^2 6x + 9 = 25 + 9$
- 2) $x^2 6x 9 = 25 9$
- 3) $x^2 6x + 36 = 25 + 36$
- 4) $x^2 6x 36 = 25 36$
- When solving the equation x² 8x 7 = 0 by completing the square, which equation is a step in the process?
 - 1) $(x-4)^2 = 9$
 - 2) $(x-4)^2 = 23$
 - 3) $(x-8)^2 = 9$
 - 4) $(x-8)^2 = 23$
- 3 Which equation has the same solution as

$$x^2 - 6x - 12 = 0$$
?

- 1) $(x+3)^2 = 21$
- 2) $(x-3)^2 = 21$
- 3) $(x+3)^2 = 3$
- 4) $(x-3)^2 = 3$
- 4 Which equation has the same solutions as

$$x^2 + 6x - 7 = 0$$
?

- 1) $(x+3)^2 = 2$
- 2) $(x-3)^2 = 2$
- 3) $(x-3)^2 = 16$
- 4) $(x+3)^2 = 16$

- 5 If $x^2 = 12x 7$ is solved by completing the square, one of the steps in the process is
 - 1) $(x-6)^2 = -43$
 - 2) $(x+6)^2 = -43$
 - 3) $(x-6)^2 = 29$
 - 4) $(x+6)^2 = 29$
- 6 If x² + 2 = 6x is solved by completing the square, an intermediate step would be
 - 1) $(x+3)^2 = 7$
 - 2) $(x-3)^2 = 7$
 - 3) $(x-3)^2 = 11$
 - 4) $(x-6)^2 = 34$
- 7 The method of completing the square was used to solve the equation 2x² - 12x + 6 = 0. Which equation is a correct step when using this method?
 - 1) $(x-3)^2 = 6$
 - 2) $(x-3)^2 = -6$
 - 3) $(x-3)^2 = 3$
 - 4) $(x-3)^2 = -3$
- 8 What are the roots of the equation $x^2 + 4x 16 = 0$?
 - 2±2√5
 - -2±2√5
 - 2±4√5
 - 4) −2±4√5
- 9 What are the solutions to the equation $x^2 8x = 10$?
 - 4±√10
 - 4±√26
 - 4±√10
 - 4) −4±√26

1)
$$x = 4 \pm 2\sqrt{10}$$

2)
$$x = -4 \pm 2\sqrt{10}$$

3)
$$x = 4 \pm 2\sqrt{2}$$

4)
$$x = -4 \pm 2\sqrt{2}$$

11 Which value of k will make $x^2 - \frac{1}{4}x + k$ a perfect square trinomial?

1)
$$\frac{1}{64}$$

2)
$$\frac{1}{16}$$

3)
$$\frac{1}{8}$$

4)
$$\frac{1}{4}$$

Brian correctly used a method of completing the square to solve the equation $x^2 + 7x - 11 = 0$. Brian's first step was to rewrite the equation as $x^2 + 7x = 11$. He then added a number to both sides of the equation. Which number did he add?

1)
$$\frac{7}{2}$$

2)
$$\frac{49}{4}$$

3)
$$\frac{49}{2}$$

13 When directed to solve a quadratic equation by completing the square, Sam arrived at the equation

$$\left(x - \frac{5}{2}\right)^2 = \frac{13}{4}$$
. Which equation could have been

the original equation given to Sam?

1)
$$x^2 + 5x + 7 = 0$$

2)
$$x^2 + 5x + 3 = 0$$

3)
$$x^2 - 5x + 7 = 0$$

4)
$$x^2 - 5x + 3 = 0$$