\qquad Date: \qquad
4)

Another method for solving quadratic equations is \qquad . In this method, a constant is added to the expression $x^{2}+b x$ so that $x^{2}+b x+c$ is a perfect square trinomial.

Completing the Square

Words To complete the square for an expression of the form
$x^{2}+b x$, follow these steps.
Step 1: Find one-half of b, the coefficient of x.
Step 2: Square the result from Step 1.
Step 3: Add the result from Step 2 to $x^{2}+b x$.
Factor the resulting expression as the square of a binomial.
Algebra $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Model Completing the Square

Example \#1
Solve the following quadratic using completing the square.
$x^{2}+2 x-48=0$

Example \#2
Solve the following quadratic using completing the square.
$x^{2}+8 x-3=17$

Example \#3
Solve the following quadratic using completing the square.
$x^{2}-7 x+12=0$

Which equation has the same solution as
$x^{2}-6 x-12=0$?

1) $(x+3)^{2}=21$
2) $(x-3)^{2}=21$
3) $(x+3)^{2}=3$
4) $(x-3)^{2}=3$

When solving the equation $x^{2}-8 x-7=0$ by completing the square, which equation is a step in the process?

1) $(x-4)^{2}=9$
2) $(x-4)^{2}=23$
3) $(x-8)^{2}=9$
4) $(x-8)^{2}=23$

Guided Practice_Completing the Square

Example \#1
Solve the following quadratic using completing the square.
$x^{2}+10 x=200$

Example \# 2
Solve the following quadratic using completing the square.
$2 x^{2}+12 x=18$

Example \# 3
Solve the following quadratic using completing the square.
$4 x^{2}+4 x-4=0$

CFU Think-Pair-Share

Example \# 1
Solve the following quadratic using completing the square.
$x^{2}+10 x+7=0$

Example \# 2
Solve the following quadratic using completing the square.
$x^{2}-9 x=1$

Answer: \qquad

Example \# 4
Solve the following quadratic using completing the square.
$2 x^{2}-16 x+12=0$

Answer: \qquad

Answer: \qquad

Independent Practice

1 Which step can be used when solving $x^{2}-6 x-25=0$ by completing the square?

1) $x^{2}-6 x+9=25+9$
2) $x^{2}-6 x-9=25-9$
3) $x^{2}-6 x+36=25+36$
4) $x^{2}-6 x-36=25-36$

2 When solving the equation $x^{2}-8 x-7=0$ by completing the square, which equation is a step in the process?

1) $(x-4)^{2}=9$
2) $(x-4)^{2}=23$
3) $(x-8)^{2}=9$
4) $(x-8)^{2}=23$

3 Which equation has the same solution as $x^{2}-6 x-12=0$?

1) $(x+3)^{2}=21$
2) $(x-3)^{2}=21$
3) $(x+3)^{2}=3$
4) $(x-3)^{2}=3$

4 Which equation has the same solutions as $x^{2}+6 x-7=0$?

1) $(x+3)^{2}=2$
2) $(x-3)^{2}=2$
3) $(x-3)^{2}=16$
4) $(x+3)^{2}=16$

5 If $x^{2}=12 x-7$ is solved by completing the square, one of the steps in the process is

1) $(x-6)^{2}=-43$
2) $(x+6)^{2}=-43$
3) $(x-6)^{2}=29$
4) $(x+6)^{2}=29$

6 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be

1) $(x+3)^{2}=7$
2) $(x-3)^{2}=7$
3) $(x-3)^{2}=11$
4) $(x-6)^{2}=34$

7 The method of completing the square was used to solve the equation $2 x^{2}-12 x+6=0$. Which equation is a correct step when using this method?

1) $(x-3)^{2}=6$
2) $(x-3)^{2}=-6$
3) $(x-3)^{2}=3$
4) $(x-3)^{2}=-3$

8 What are the roots of the equation $x^{2}+4 x-16=0$?

1) $2 \pm 2 \sqrt{5}$
2) $-2 \pm 2 \sqrt{5}$
3) $2 \pm 4 \sqrt{5}$
4) $-2 \pm 4 \sqrt{5}$

9 What are the solutions to the equation $x^{2}-8 x=10$?

1) $4 \pm \sqrt{10}$
2) $4 \pm \sqrt{26}$
3) $-4 \pm \sqrt{10}$
4) $-4 \pm \sqrt{26}$

10 What are the solutions to the equation $x^{2}-8 x=24$?

1) $x=4 \pm 2 \sqrt{10}$
2) $x=-4 \pm 2 \sqrt{10}$
3) $x=4 \pm 2 \sqrt{2}$
4) $x=-4 \pm 2 \sqrt{2}$

11 Which value of k will make $x^{2}-\frac{1}{4} x+k$ a perfect square trinomial?

1) $\frac{1}{64}$
2) $\frac{1}{16}$
3) $\frac{1}{8}$
4) $\frac{1}{4}$

12 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$.
Brian's first step was to rewrite the equation as
$x^{2}+7 x=11$. He then added a number to both sides
of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

13 When directed to solve a quadratic equation by completing the square, Sam arrived at the equation $\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}$. Which equation could have been
the original equation given to Sam?

1) $x^{2}+5 x+7=0$
2) $x^{2}+5 x+3=0$
3) $x^{2}-5 x+7=0$
4) $x^{2}-5 x+3=0$
