Name:	Date:		
Quadratic Equations	Class: Algebra		

Topic: Discriminant

Notes

Notes				
		Discrimi	nant: b² - 4ac	
How does Discriminant W	ork?	$\sqrt{+}$ means $\sqrt{0}$ means	inant is under thess	·
	Тур	e One	Type Two	Type Three
Value of the Discriminant	b ² -	4ac >0	b^2 - 4ac = 0	b ² - 4ac < 0
Number and Types of Solutions.				
Graphs of $y = ax^2 + bx + c$ Example:				

Model_ Find the discriminant. Determine the types of solutions. If the roots are real, solve each quadratic equation. State rational roots in simplest form, and round irrational roots to the nearest hundredth.

EX #1	EX #2	EX #3
$X^2 - 6x + 9 = 0$	$X^2 - 3x - 10 = 0$	$X^2 - 3x + 10 = 0$
<u>Discriminant:</u>	<u>Discriminant:</u>	<u>Discriminant:</u>
Solution:	Solution:	Solution:

CFU_Think-Pair-Share

- a) Find the discriminant and describe the nature of the roots.
- b) If the roots are real, solve each quadratic equation. State rational roots in simplest form, and round irrational roots to the nearest hundredth.

$X^2 - 5x - 3 = 0$	X^2 - 5x + 5 = 0	$X^2 - 2x - 8 = 0$	4X ² - 1= 0	
a)	a)	a)	a)	

Independent Practice				
How many real-number solutions does $4x^{2} + 2x + 5 = 0 \text{ have?}$ 1) one 2) two 3) zero 4) infinitely many	Is the solution to the quadratic equation written below rational or irrational? Justify your answer. $0 = 2x^2 + 3x - 10$			

Discriminant

The discriminant of the quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) is $b^2 - 4ac$.

$$b^2-4ac>0$$

$$b^2 - 4ac = 0$$

$$b^2 - 4ac < 0$$

two distinct real solutions one distinct real solution

two distinct nonreal complex solutions

Find the type and number of solutions for each equation.

$$x^2 - 6x = -7$$

$$x^2 - 6x = -9$$

A
$$x^2 - 6x = -7$$
 B $x^2 - 6x = -9$ C $x^2 - 6x = -11$

Find the value of the discriminant of each quadratic equation.

1)
$$6p^2 - 2p - 3 = 0$$

2)
$$-2x^2 - x - 1 = 0$$

3)
$$-4m^2 - 4m + 5 = 0$$

4)
$$5b^2 + b - 2 = 0$$

5)
$$r^2 + 5r + 2 = 0$$

6)
$$2p^2 + 5p - 4 = 0$$

Find the discriminant of each quadratic equation then state the number of real and imaginary solutions.

7)
$$9n^2 - 3n - 8 = -10$$

8)
$$-2x^2 - 8x - 14 = -6$$

9)
$$9m^2 + 6m + 6 = 5$$

10)
$$4a^2 = 8a - 4$$