\qquad Date \qquad
\qquad

Acceleration

Help: Watch the video that is in this folder if you need help with solving these problems.

Acceleration $=\underline{\text { Final velocity }- \text { Initial velocity }}$ Time
 $$
\text { Time }=\frac{\text { Final Velocity }- \text { Initial Velocity }}{\text { Acceleration }}
$$

 Time $=\underline{\text { Final Velocity }- \text { Initial Velocity }}$

 Time $=\underline{\text { Final Velocity }- \text { Initial Velocity }}$

 Acceleration

 Acceleration}

Final Velocity $=$ Acceleration $*$ Time + Initial Velocity \quad Force $=$ mass x acceleration
Problems: In order to receive credit for this worksheet you MUST show your work. You can use a calculator but you must show all of the steps in the spaces provided.

1. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is $4 \mathrm{~m} / \mathrm{s}$. But 3 seconds later, at the bottom of the slope, its speed is $22 \mathrm{~m} / \mathrm{s}$. What is its average acceleration?
2. A cyclist accelerates from $0 \mathrm{~m} / \mathrm{s}$ to $8 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car which accelerates from 0 to $30 \mathrm{~m} / \mathrm{s}$ in 8 seconds?
3. A car advertisement states that a certain car can accelerate from rest to $70 \mathrm{~km} / \mathrm{h}$ in 7 seconds. Find the car's average acceleration.
4. A lizard accelerates from $2 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 4 seconds. What is the lizard's average acceleration?
5. If a Ferrari, with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$, accelerates at a rate of $50 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3 seconds, what will its final velocity be?
6. A man hits a golf ball (0.2 kg) which accelerates at a rate of from $0 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What acceleration of the ball?
