| Name | |--| | forms; a Transverse Wave which moves the medium <i>perpendicular</i> to the wave motion, and the standard of the wave motion. | | Transverse Wave Wave Motion Wave Motion Wave Motion | | | | Particle Motion Examples of Transverse waves would be a vibrating guitar string or electromagnetic waves, while an example of a Longitudinal wave would be a "Slinky" wave that you push and pull. | | Waves have several properties which are represented in the diagrams below. In a Transverse wave the Crest and Troughs are the locations of maximum displacement up or down. The Amplitude is the measurement of maximum displacement. The Wavelength is the distance of one complete wave cycle. For example, the distance from crest to crest or trough to trough would be 1 wavelength. In a Longitudinal wave, areas of maximum displacement are known as Compressions and Rarefactions . The stronger the wave, the more compressed and spread out the wave medium becomes. | | Transverse Wave crest Longitudinal Wave Compressions | | trough Rarefactions | | Fill in the statements using the BOLD words from the above information. | | 1- Wave motion that is Parallel to wave direction describes a wave. | | 2- A is the maximum upwards displacement in a Transverse wave. | | 3- One complete wave cycle is referred to as a | | 4- Wave motion that is Perpendicular to wave direction describes a wave. | | 5- A or is the maximum displacement in a Longitudinal wave. | | 6- An Ocean wave would be an example of a wave. | | 7- The distance from one trough to another trough is called a | | 8- The measurement of displacement is called a wave's | | Name | Date | Period | • 🐷 | |--|---|---|---------| | | Waves Unit 2, Wo | orksheet 5 | | | 1. The illustration below show | ws a series of transverse waves. I | Label each part in the space provided. | | | a | 4 | b | | | b | # C I | \ | | | c | | | .2. | | d | ─ \ | | * | | e | - | | | | f
g. | | | | | Fill in the blanks: | | • | | | | from one plac | se to another | | | | T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | The state of s | | while the lowest part is the | | | 4. The | | • | | | | t to the next is the | | | | 6. Below are a number of seri | es of waves. Underneath each dia | agram write the numbers of waves in the | series. | | A | B | C D | | | b. Which of the above | has the biggest amplitude? c has the shortest wavelength? c has the longest wavelength? | | | and label a transverse wave