Name:

Regents Chemistry

Objectives:

- 1. Identify and understand basic chemistry terms: matter, atom, compound, element, mixture
- 2. Identify and draw particle diagrams for different phases of matter
- 3. Identify and classify matter as an element, compound, or mixture
- 4. Draw particle diagrams for each classification of matter
- 5. Identify between physical and chemical properties/changes
- 6. Understand mass and matter is conserved in a chemical reaction

I. <u>Important Terms:</u>

Chemistry: Study of _______

• Matter: Any object that has _____

Atom	vs. Compound
Definition:	Definition:
Particle Diagram	Particle Diagram

II. <u>Phases of Matter</u>

- The phase that matter is in depends on:
 - 1.

2.

Phase	Shape	Volume	Particle Diaram	IMF	Movement
Solid (s)					
Liquid (/)					
Gas (g)					
-	These are the t	hree most commo	on states and the ones we will focu	s on for this cou	Irse

However, there are additional ones such as plasma, supercritical fluid, and degenerate gas.

III. <u>Classification of Matter</u>

Element: Substance that ______ under normal conditions
 Compound: Substance consisting of ______

 Mixture: ______

(A)	(B)	(C)
H2 (g)	H20(1)	NaCl (aq)
He (g)	H20 (g)	C6H1206(aq)
K (s)	NaC1 (s)	C02(aq)
Co (s)	C02 (g)	Air
Na (s)	C6H1206 (s)	Tap water

IV. Physical vs. Chemical Properties

Physical Properties	Chemical Properties
Properties of an element or compound that can be	The ability of an element or substance to undergo a
observed or measured	and
	form a
Enougher of Division Duran anti-	Examples of Chamical Properties
Examples of Physical Properties:	Examples of Chemical Properties:
• Physical or Chemical Properties: Deter	mine whether chemical or physical

- Physical or Chemical Properties: Determine whether chemical or physical
 - 1. Water boils at 100 degrees Celsius
 - 2. Water can be separated by electrolysis into hydrogen and oxygen
 - 3. Sugar is capable of dissolving in water
 - 4. Vinegar will react with baking soda
 - 5. Yeasts acts on sugar to form carbon dioxide and ethanol
 - 6. Wood is flammable

V. Physical and Chemical

Physical Change	Chemical Change
• It does NOT	• Changing
it just changes	into a
 A change that does NOT affect a substance's chemical composition 	A color change may occur and a
Physical Change Phrases	Chemical Change Phrases
Particle Diagram for Physical Change	Particle Diagram for Chemical Change

• **Physical or Chemical Change:** Determine whether chemical or physical

- 1. Dry ice, solid carbon dioxide, is sublimed at room temperature.
- 2. Iron rusts in damp environment
- 3. Gasoline burns in the presence of oxygen
- 4. Hydrogen peroxide decomposes to water and oxygen
- 5. Burning coal
- 6. Cooking a steak
- 7. Cutting grass

• <u>Chemical Reaction Equation:</u>

A chemical reaction ALWAYS results in new substance(s)

2 H₂ (g) + O₂ (g) → 2 H₂O (l)

VI. <u>Conservation of Mass:</u>

• Mass cannot be created or destroyed in a chemical reaction

Silver nitrate (AgN03) and sodium chloride (NaCl) solutions before and after chemical reaction

Examples:

- 1. If 50.0 grams of sodium reacts with chlorine to form 126 grams of sodium chloride. How many grams of chlorine reacted?
- 2. If 178.8 g of water is separated into hydrogen and oxygen gas, and the hydrogen gas has a mass of 20.0 g. What is the mass of the oxygen gas produced?