Name
Date: \qquad
Ms. Napolitano
COS: \qquad
Topic: Exponents
Day 1_ Monday March 23 rd
Key Points_ Label the base, exponent, and power.
Model_ Let's put all of this information together!
Power: or exponent of a \# tells you how many times to multiply Base. the \#t or variable that
gets multiplied when using an
exponent. Exponent: tells you how many times

1. State the base, exponent, determine the value and write the power in words.

Power	State the base.	State the exponent.	Expanded Form	Evaluate (Value)	Words
3^{0}				1 ***Any number raised to the zero power is 1 .	
3^{1}		1			
3^{2}					Three raised to the second power. Or Three Squared. Or 2 factors of 3.
3^{3}			$3 \times 3 \times 3$		
3^{4}	3				

2. Write each expression as a power.

Expressions/Repeated Factors	Power (Exponential Form)	Evaluate (Value)
6×6		
$P \times P$		
$2 \times 2 \times 2$		
$100 \times 100 \times 100$		
$3 \times 3 \times 3 \times 3$		
$1 \times 1 \times 1 \times 1 \times 1$		
$10 \times 10 \times 10 \times 10 \times 10 \times 10$		

3. Find the value of a power. (Evaluate)
a. $11^{2}=$ \qquad
b. $6^{3}=$ \qquad
C. $\left(\frac{1}{2}\right)^{2}=$ \qquad

4. Error Analysis:

Jaden was asked to evaluate 10^{2}. He said that the value of the power 10^{2} is 20 because $10 \times 2=20$. Do you agree with Jaden? If not, what is the correct answer? Justify your answer.

5. Error Analysis:

Ms. Napolitano asked the class to evaluate 10°. Bella said that 10° is 10 because any number to the zero-power equals the base. Petra disagreed with Bella and said 10° is 0 because $10 \times 0=0$. However, Madison disagreed with both Petra and Bella because any number besides zero raised to the 0 power is equal to 1 . Who do you agree with? Justify your answer.

6. Error Analysis:

Ms. Napolitano asked write five and three tenths cubed in exponential form. Omar said the wrote down the following answer (5.3)(5.3)(5.3). Nazier wrote down 0.53^{3} as his final answer. Zion wrote 5.3^{3} as his final answer and Ashley wrote 5.3^{2} as her final answer. Who is correct? Justify your answer.
7. Create a power, then state the base, exponent, determine the value and write the power in words.

Power	State the base.	State the exponent.	Expanded Form	Evaluate (Value)	Words

Practice Makes Perfect!

Write using exponents.

1. $3 \times 3 \times 3 \times 3$ \qquad 2. 364×364
2. $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ \qquad 4. $13 \times 13 \times 13$ \qquad
3. $8 \times 8 \times 8 \times 7 \times 7$ \qquad 6. 49 \qquad
Write in expanded form.
4. 10^{4} \qquad 8. 6^{5} \qquad
5. 3^{2} \qquad 10. 7^{3} \qquad
6. 12^{4} \qquad 12. 5 cubed \qquad
Write in standard form.
7. 5^{4} \qquad 14. 2^{6} \qquad 15. 11 squared \qquad
8. 10^{7} \qquad 17. 12^{2} \qquad 18. 6 cubed \qquad
Compare using $<,>$, or $=$.
9. $4^{2} \bigcirc 2^{4}$
10. $4^{3} \bigcirc 3^{4}$
11. $5^{8} \bigcirc 5^{9}$
12. $3^{8} \bigcirc 3 \times 8$
13. $2^{5} \bigcirc 5^{2}$
14. $7^{3} \bigcirc 3^{7}$
15. $10^{3} \bigcirc 10+10+10$
16. $10^{4} \bigcirc 4 \times 10$
17. $4^{2} \bigcirc 2^{4}$
18. $4^{3} \bigcirc 3^{4}$
19. $3^{8} \bigcirc 3 \times 8$
20. $5^{3} \bigcirc 5 \times 5 \times 5$

For each number in exponential notation, identify the base, exponent, and power. Use a calculator to write each number in standard form.
28. A typical American kid watches about 18^{4} television advertisements between birth and high school graduation.
base \qquad
power \qquad
exponent \qquad
standard form \qquad
29. The highest point in Kentucky is Black Mountain. Its height is about 2^{12} feet.
base \qquad
power \qquad
exponent \qquad
standard form \qquad

