Ms. Streffacio

Class: _____

8.EE.6

A line contains the points (4, 2) and (0, -1). What is the equation of the line?

A
$$y = 2x - 6$$

B
$$y = \frac{3}{4}x - 1$$

C
$$y = \frac{1}{4}x + 1$$

D
$$y = \frac{4}{3}x - \frac{10}{3}$$

2. What is the equation of the line that passes through point (4, 12) and has a y-intercept of -2?

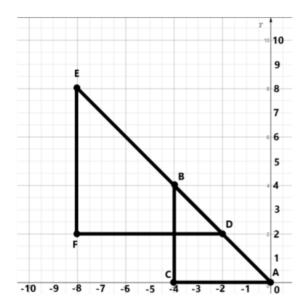
$$\mathbf{A} \qquad y = \frac{5}{2}x - 2$$

$$\mathbf{B} \qquad y = \frac{7}{2}x - 2$$

$$\mathbf{C} \qquad y = 2x - 2$$

D
$$y = 6x - 2$$

3. What is the equation of the line that passes through points (-3, 0.5) and (3, -0.5)?


$$A y = -\frac{1}{6}x$$

$$B y = -6x$$

C
$$y = -\frac{1}{6}x + 1$$

D
$$y = -6x - 17.5$$

- 4. The points (4,1) and (x,-6) lie on the same line. If the slope of the line is 1, what is the value of x?
 - **A** x = -3
 - **B** x = 3
 - $\mathbf{C} \quad x = 9$
 - **D** x = 11
- 5. In the graph below ΔEDF is similar to ΔBAC .

- Which proportion can be used to show that the slopes of \overline{ED} and \overline{BA} are the same?
- A. $\frac{EF}{FD} = \frac{BC}{CA}$

C. $\frac{EB}{EF} = \frac{BD}{BC}$

B. $\frac{EB}{BD} = \frac{BD}{DA}$

- D. $\frac{ED}{DF} = \frac{BA}{BC}$
- 6. What is the equation of the line that passes through point (4, 12) and has a y-intercept of -2.

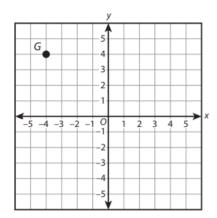
E (-8, 8)

A. $y = \frac{5}{2}x - 2$

C. y = 2x - 2

B. $y = \frac{7}{2}x - 2$

- D. y = 6x 2
- 7. In the coordinate plane below, $\triangle ABC$ is similar to $\triangle DEF$.

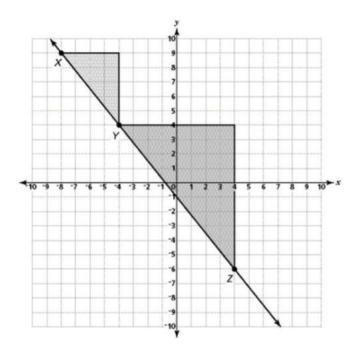

What is the value of y?

A. 3

C. -2

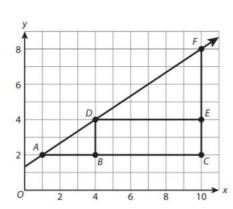
B. 4

- D. 6
- 8. Point *G* is plotted on the coordinate plane.



Roland correctly wrote the equation of a line through point G as y = mx - 4.

What is the value of m in Roland's equation?

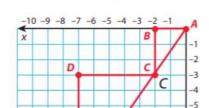

- \mathbf{A} -4
- **B** −2
- **C** 2
- **D** 4

9. In the graph below, the two triangles are similar.

What conclusion can be drawn to determine the slope of line XZ?

- A. The slope of line XZ is $\frac{-10}{4}$, because this is the sum of the slopes of \overline{XY} and \overline{YZ} .
- B. The slope of line XZ is $\frac{-5}{4}$, because this is half the slope of \overline{YZ} , which is $\frac{-10}{8}$.
- C. The slope of line XZ is $\frac{-10}{4}$, because this is twice the slope of \overline{XY} , which is $\frac{-5}{4}$.
- D. The slope of line XZ is $\frac{-5}{4}$, because the slopes of \overline{XY} and \overline{YZ} are each $\frac{-5}{4}$.
- Consider the graph shown. Choose True or False for each statement.

- **a.** The slope between points *A* and *B* is the same as the slope between points *A* and *D*.
- 11. Chad's pay rate for babysitting is y = 9x, where x is the number of hours ame he babysits, and y is the number of dollars he earns. Horatio's pay rate is shown in the graph below.


☐ True ☐ False

☐ True ☐ False

In the graph below, the slopes of \overline{AC} and \overline{CE} are the same.

☐ True ☐ False

☐ True ☐ False

Horatio's Babysitting Pay Rate