11.1 The Work of Gregor Mendel

Less	son Objectives	
	Describe Mendel's studies and conclusions about inheritance.	
	Describe what happens during segregation.	

Lesson Summary

The Experiments of Gregor Mendel The delivery of characteristics from parents to offspring is heredity. The scientific study of heredity is genetics. Gregor Mendel founded modern genetics with his experiments on a convenient model system, pea plants:

- ► Fertilization is the process in which reproductive cells (egg from the female and sperm from the male) join to produce a new cell.
- ► A trait is a specific characteristic, such as (in peas) seed color or plant height.
- Mendel prevented self-pollination in the peas. He controlled fertilization so he could study how traits passed from one generation to the next.
- ► He created hybrids, which are crosses between true-breeding parents (the P generation) with different traits.
 - These hybrids were the F₁ (first filial) generation.
 - They each showed the characteristic of only one parent.
- ▶ Mendel found that traits are controlled by factors that pass from parent to offspring. Those factors are genes. The different forms of a gene are alleles.
- ▶ Mendel's principle of dominance states that some alleles are dominant and others are recessive. The recessive allele is exhibited only when the dominant allele is not present.

Segregation Mendel allowed members of the F1 generation to self-pollinate. The trait controlled by the recessive allele appeared in the next generation (F2) in about one-fourth of the offspring—even when it did not appear in the F₁ generation.

- Separation of alleles is segregation.
- ▶ When gametes (sex cells) form, alleles segregate so that each gamete carries only one allele
- ► The F₂ generation gets a new combination of alleles: one from each parent.

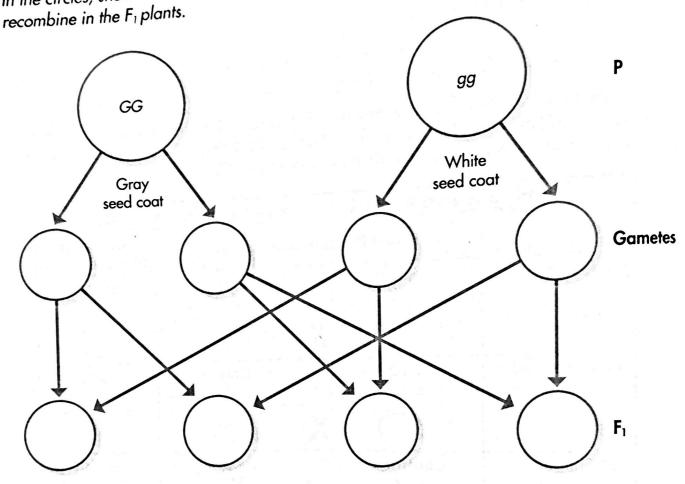
The Experiments of Gregor Mendel Match the term with its definition

Term	ne re		Definition
	1.	genes	A. Specific characteristics that
	2.	hybrids	A. Specific characteristics that vary among individuals B. The offspring of true base 1:
*	3.		B. The offspring of true-breeding parents with different traits C. Factors that determine traits
	4.	alleles	D. Sex cells, egg or sperment
	5.	gametes	E. The different forms of a gene

		1, 1,	
How did Mendel cross-pollinate flow	vers?	2	
The second second			
		3673	
What is the difference between a gen	e and an allele?	en in a second	y I _ 2* c .
			<u> </u>
State the principle of dominance.			

The table shows some crosses between true-breeding parents that carry pairs of dominant alleles (such as SS) or pairs of recessive alleles (such as ss). Complete the table to show the combination of alleles in the offspring. Then use it to answer Questions 10–11.

Dominant and Recessive Forms of Pea Plant Traits						
Trait	Parent Plants (P	Offspring (F ₁ Generation)				
Seed Color	Yellow YY	Green <i>yy</i>	Yellow <i>Yy</i>			
	\circ x					
Seed Coat Color	White gg	Gray GG	Gray			
	\bigcirc X					
Pod Shape	Constricted ss	Smooth SS	Smooth			
e es es es es es es es es	VOOD X					
Pod Color	Green CC	Yellow cc	Green			
OF THE PARTY OF THE	₩ X					


10. What is the dominant shape of a pea pod? How do you know?	
11. What symbol represents the recessive allele for pod color?	

12. What is segregation? What is the result of segregation?

13. THINK YISUALLY The capital letter G represents the allele in peas that causes the dominant trait, gray seed coat. The lower-case letter g represents the recessive allele that

In the circles, show the alleles in the gametes of the parent generation. Show how the alleles

14. A black cat and a white cat have four black kittens in the F_1 generation. In the F_2 generation, there are three black kittens and one white kitten. Explain how the \tilde{F}_2 generation proves that genetic information passes unchanged from one generation to the next, even when a specific trait is not exhibited.