केत्रक्षिताल्या भटलील

Hearson 4

The student drew a diagram to help write expressions for the perimeter.

□Pair/Share

How could you use the distributive property to write one of the expressions for the perimeter?

The sides of a regular polygon are all the same lenath.

How might drawing a diagram help you solve the problem?

Study the student model below. Then solve problems 16-18.

Student Model

The length of a rectangle is three times its width, w. Write three different expressions to describe its perimeter.

Use what you know about rectangles and perimeter to draw a diagram.

Expression 1:

3w + w + 3w + w, the sum of all 4 sides

Expression 2:

2(3w) + 2(w), the sum of twice the length and twice the width

Expression 3:

2(3w + w), twice the sum of the length and the width

Solution: $\frac{3w + w + 3w + w}{2(3w) + 2(w)}$; $\frac{2(3w + w)}{2(3w + w)}$

The expression 12c - 18 represents the perimeter of a regular hexagon. Write two different expressions to describe its perimeter. Then write an expression for the length of one of its sides. **Show your work.**

Solution:

Pare Lander Parelle

1,2550032

 $\frac{1}{2}$ Is $\frac{1}{4}$ (8y – 12) equivalent to 2y – 12? Explain why or why not.

Show your work.

Solution:		

Which expression below is equivalent to -3x + 5(x + 2)? Circle the correct answer.

A 2x + 2

B -x + 2

C 2x + 10

D -8x + 10

Kaitlin chose **A** as the correct answer. How did she get that answer?

I know that the distributive property works the same for fractions as for whole numbers.

□Pair/Share

What is another way to tell whether or not two expressions are equivalent?

Which operation must I perform first in this problem?

Pair/Share

How would you help Kaitlin understand her error?